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Abstract: This paper explores the application of artificial intelligence on edge devices to
enhance security in critical infrastructures, with a specific focus on the use case of a battery-
powered mobile system for fire detection in tunnels. The study leverages the YOLOv5
convolutional neural network (CNN) for real-time detection, focusing on a comparative
analysis across three low-power platforms, NXP i.MX93, Xilinx Kria KV260, and NVIDIA
Jetson Orin Nano, evaluating their performance in terms of detection accuracy (mAP),
inference time, and energy consumption. The paper also presents a methodology for
implementing neural networks on various platforms, aiming to provide a scalable approach
to edge artificial intelligence (AI) deployment. The findings offer valuable insights into the
trade-offs between computational efficiency and power consumption, guiding the selection
of edge computing solutions in security-critical applications.

Keywords: edge AI; energy-efficient AI; low-power embedded systems; critical infrastructure
protection; fire and smoke detection; YOLOv5

1. Introduction
Critical infrastructure (CI) is essential for societal stability, economic growth, and

public safety. Ensuring their protection has become increasingly urgent for most current
governments, or the European Union which has launched, among others, the TESTUDO
project [1] for the autonomous swarm of heterogeneous resources in infrastructure pro-
tection via threat prediction and prevention. Road transport is considered an important
critical infrastructure in several countries [2] and its disruption can lead to severe economic
consequences and human casualties. Among the various risks associated with road trans-
port, tunnels present particular hazards. One of the most serious threats to both material
assets and human lives is fire, which can escalate quickly in these confined spaces, making
it especially dangerous.

Traditional sensor-based detection systems analyze the chemical properties of smoke
to trigger alarms but can be prone to false alerts or may trigger alarms too late. Moreover,
these systems may not be effective in large areas, wild environments, or high-temperature
conditions, where they could miss important signals [3].

Several systems based on wireless sensor networks (WSNs) integrate temperature,
humidity, gas, and flame sensors to detect early signs of combustion in rural areas. These
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systems typically transmit data to a web server using mobile networks like GPRS and
TCP/IP protocols, offering real-time alerts. Although promising, WSN-based systems of-
ten lack visual confirmation and spatial granularity, underscoring the need to combine
traditional sensing with AI-driven computer vision for more robust fire monitoring [4]. In
this context, two paradigms are typically considered for video analytics [5]: cloud com-
puting, where inference is offloaded to remote servers [6], and edge computing, where
processing occurs locally on the device [5]. However, relying on streaming video to per-
form detection on remote servers can be computationally expensive and impractical in
certain scenarios. In environments where network coverage may be limited or unreliable,
continuous high-bandwidth video transmission is not always feasible. In such cases, it is
more efficient to perform detection directly on embedded surveillance systems, which can
process video locally and send only relevant events and detections to the server, reducing
bandwidth usage.

One challenge in implementing AI-based vision systems in embedded devices is the
high computational requirements of convolutional neural networks (CNNs), which results
in significant power consumption and slower inference time. This makes it particularly
difficult to deploy such models in battery-powered embedded systems, where energy
efficiency is crucial. As a result, one of the main research in the field focuses on developing
techniques to optimize and adapt these models for deployment in low-power embedded
devices, ensuring reliable real-time detection even in harsh environment scenarios like the
one described earlier.

This paper presents a performance comparison of the YOLOv5 (You Only Look Once,
version 5) convolutional neural network (CNN) for real-time fire and smoke detection
on critical roadway infrastructures, with a focus on deployment in battery-powered em-
bedded systems. The primary objective of this study is to determine which of three
distinct processing platforms—NXP i.MX93 (which integrates a microprocessor and a neu-
ral processing unit, or NPU), Xilinx Kria KV260 (which combines a microprocessor with a
field-programmable gate array, or FPGA), and NVIDIA Jetson Orin Nano (which features a
microprocessor and a graphics processing unit, or GPU)—is the most efficient for running
the YOLOv5 model, considering key metrics such as energy consumption, mean average
precision (mAP), and inference time.

Several researchers have explored the benchmarking of embedded neural networks,
often evaluating performance metrics such as accuracy or inference speed. However,
there remains a clear gap in the literature regarding power consumption, which is a key
concern in embedded systems. Moreover, to the best of our knowledge, no prior study
has conducted a comparative analysis of FPGA, NPU, and GPU platforms under the same
experimental conditions—although these accelerators have been studied individually [7–9].

While prior research has demonstrated the feasibility of deploying CNNs like YOLOv5
for fire detection [10], existing studies often overlook critical trade-offs in real-world em-
bedded deployments. Most works focus on optimizing performance for a single hardware
platform in isolation or neglect to quantify energy efficiency under standardized workloads
despite its importance for battery-operated systems [11]. Furthermore, comparative anal-
yses of heterogeneous accelerators (NPUs, FPGAs, and GPUs) in fire detection scenarios
remain limited, particularly for infrastructure monitoring where latency, accuracy, and
power constraints intersect.

Using a standardized methodology and assessment tools, the study aims to provide a
detailed comparison of these platforms’ performance in executing the deep learning model.
By evaluating mAP, inference time, and energy consumption jointly, this work addresses a
gap in the literature and offers actionable insights for deploying AI in energy-constrained
edge applications. This research contributes to understanding how different hardware
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architectures, such as system-on-chip (SoC) designs that combine a microprocessor with
specialized accelerators, impact performance, and efficiency. These insights help guide the
selection of optimal platforms for battery-powered, real-time embedded applications.

The paper is structured in the following manner: Section 2 provides a comprehensive
review of the state-of-the-art, focusing on the object detection models used for fire detection
and the hardware used to accelerate convolutional neural networks on embedded devices.
Section 3 details the materials and methods, including descriptions of the model, dataset,
hardware platforms, training, and methods used. Section 4 presents the results, offering
a comparative analysis of platform performance in terms of energy consumption, mAP,
and inference time. Section 5 presents a discussion of the results of the study, summarizing
key findings and proposing directions for future research. Subsequently, Section 6 offers
the conclusions.

2. State of the Art: Advances in Fire Detection and CNN
Hardware Acceleration
2.1. AI-Based Fire Detection

With the growing adoption of AI in safety-critical applications, deep learning-based
fire detection has received significant attention in recent years. CNNs, especially those
from the YOLO family, have been widely applied in this domain due to their real-time
object detection capabilities. Studies have shown YOLO variants achieving high detection
accuracy on fire and smoke datasets, but often rely on high-performance, power-hungry
GPU systems [3,12,13]. While these results are promising, such platforms are impractical for
many real-world deployments where size, cost, and energy constraints are paramount. To
address these limitations, the field is shifting toward edge computing—bringing inference
closer to the data source using compact, energy-efficient hardware. This is especially
relevant in IoT and smart infrastructure scenarios such as tunnel monitoring, where fast
response times and autonomous operation are essential.

Several lightweight models and optimizations have been proposed for embedded
platforms, with implementations on NPUs (e.g., i.MX series), FPGAs (e.g., Xilinx DPUs),
and GPUs (e.g., NVIDIA Jetson family) [14–17]. However, these studies often focus on a
single platform or specific model optimization and lack a unified comparison under con-
sistent workloads. The systematic evaluation of such edge platforms—known as edge AI
benchmarking—has thus become an emerging research priority [18]. Unlike benchmarking
in cloud or HPC environments, edge benchmarking must contend with platform hetero-
geneity, resource constraints, and deployment variability. Recent surveys have classified
benchmarking efforts into explicit tools (e.g., EdgeBench [19], pCAMP [20], AIoTBench [21])
and implicit studies using custom performance tests [22,23]. These benchmarks evalu-
ate metrics such as inference time, energy consumption, and model accuracy, but they
rarely target security-critical use cases or perform comparative analysis across diverse
accelerator types.

In particular, there is a gap in benchmarking studies that

• Compare multiple low-power hardware accelerators (NPU, FPGA, GPU) under the
same model and workload conditions;

• Focus on fire and smoke detection for infrastructure protection;
• Analyze the trade-offs between detection accuracy (mAP), inference latency, and

power consumption in realistic embedded scenarios.

This paper addresses that gap by benchmarking the YOLOv5 object detection model
across three heterogeneous platforms: NXP i.MX93 (NPU), Xilinx Kria KV260 (FPGA), and
NVIDIA Jetson Orin Nano (GPU). The goal is to provide a comparative evaluation that
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informs the selection of edge AI hardware for deployment in mobile, battery-powered
systems designed for tunnel fire detection.

2.2. Hardware Accelerators for CNN

When deploying neural networks in embedded systems, hardware accelerators are a
significant research focus to improve performance while maintaining energy efficiency [18].
Several works have focused on the use of hardware accelerators to efficiently execute neural
networks for object detection in embedded systems.

2.2.1. NPU

NPUs have emerged as specialized hardware accelerators designed to optimize deep
learning tasks. Unlike traditional CPUs and GPUs, NPUs are tailored for efficient execution
of neural network operations, such as matrix multiplications and convolutions. Their
architecture improves performance and energy efficiency, making them a good option for
AI-driven applications in mobile devices, autonomous systems, and embedded devices.

Several studies have explored the use of YOLO-based models on embedded platforms
accelerated by NPUs, particularly in mobile or energy-constrained environments. These
works are relevant to this study due to their emphasis on low-power object detection using
variants of the YOLO architecture. For example, a human detection system was deployed
on an embedded platform with an i.MX NPU [24]. In the context of unmanned aerial
vehicles (UAVs), YOLOv3-Tiny was executed on an NPU-based platform achieving a mAP
of 0.591 with only 6 million parameters [25], while another UAV implementation using
YOLOv3 reached a mAP of 0.897 [26]. These scores demonstrate the feasibility of deploying
object detection on low-power hardware with a lightweight architecture.

2.2.2. FPGA and DPU

The inherent parallelism of the FPGA makes them a very good option at the time
of accelerating CNNs, and it benefits the inference of a deep learning model by reducing
execution time and enhancing program accuracy.

FPGAs are used to describe the hardware and provide the opportunity to design
custom acceleration engines at the hardware level using description languages. There are
works that design their own dedicated engines such as Jinguji et al. [27] that compared a
YOLO model in an FPGA (with its own accelerator engine) and a mobile GPU that achieved
x3.85 higher FPS speed and x2.00 better FPS/W power consumption in the FPGA.

A major limitation of FPGA-based solutions is their relatively long development time
compared to software-based implementations, due to the need for hardware description
languages and specialized design flows. This complexity has limited the accessibility of
FPGAs for many developers. To address this, FPGA vendors have introduced dedicated
IP cores for neural network acceleration, such as Xilinx’s deep learning processor unit
(DPU). These DPUs are configurable, pre-designed components that allow designers to
tailor resource usage according to application needs. Thanks to their balance between
performance and ease of integration, DPUs are increasingly adopted in computer vision
applications [28–30].

The widespread adoption of Xilinx DPUs in computer vision has led to numerous
practical implementations in embedded edge systems. Two examples are particularly
relevant due to their focus on real-time performance and efficient resource utilization—key
concerns in fire detection scenarios. A notable case is a multi-task ADAS detection system
implemented on the Xilinx KV260 platform using a B4096 DPU, which achieved 25.4 FPS
while maintaining a power consumption of only 7.19 W [17]. This highlights the DPU’s
capacity to handle multiple inference tasks under power constraints. Another study
deployed a video analytics application on an FPGA equipped with two B4096 DPUs,
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resulting in a 33-fold increase in video processing throughput compared to a software
GPU-accelerated baseline [16]. These cases exemplify the advantages of DPU-accelerated
FPGA solutions in real-time embedded vision workloads, supporting their relevance for
benchmarking fire detection models on similar platforms.

2.2.3. GPU

Graphics processing units (GPUs) have gained relevance in embedded systems to
accelerate deep learning tasks, in particular convolutional neural networks (CNNs). Their
parallel processing capabilities enable efficient execution of complex computations, making
them suitable for real-time applications in edge computing environments.

Several studies have demonstrated the effectiveness of GPUs in embedded platforms.
For example, Farooq et al. [31] evaluated thermal imaging on embedded GPU platforms
for vehicular assistance systems. They trained YOLOv5 variants on a novel thermal dataset
and deployed optimized models on devices like the NVIDIA Jetson Nano and Xavier NX.
The TensorRT-optimized network achieved 11 frames per second (FPS) on the Jetson Nano
and 60 FPS on the Xavier NX, highlighting the potential of GPUs in processing thermal
images for real-time applications.

Another study by Machado et al. [32] analyzed the power consumption of the NVIDIA
Jetson Nano board while performing object classification using YOLOv5 models. The
results indicated that the YOLOv5n variant outperformed others in terms of throughput,
achieving 12.34 FPS, and showed low power consumption, consuming 0.154 mWh per
frame, in other words, about 0.55 Joules per inference.

Rey et al. [33] conducted a comprehensive benchmark of YOLOv8n and YOLOv8s
models across various quantization levels (FP32, FP16, INT8) on GPU- and CPU-based
platforms, including the NVIDIA Jetson Orin Nano, Orin NX, and Raspberry Pi 5. Their
research focused on drone-based applications, evaluating detection accuracy, inference
speed, and energy consumption. While their study provides valuable insights into the
performance of different YOLOv8 models on these platforms, our research diverges by
concentrating solely on the YOLOv5n model in INT8 quantization. Moreover, we extend
the comparison to include diverse hardware accelerators—FPGA, NPU, and GPU—within
the specific context of fire and smoke detection in critical infrastructure environments.

These studies underscore the versatility and efficiency of GPUs in embedded systems,
particularly for applications requiring real-time data processing and object detection.

3. Materials and Methods
3.1. Model

The selection of the YOLOv5n model in this study is motivated by its proven efficiency
and compatibility with a wide range of embedded hardware platforms. Previous studies
have highlighted the limitations of alternative lightweight models such as SSD-MobileNet
and EfficientDet on resource-constrained edge devices. Specifically, MobileNet-based
models struggle to achieve real-time performance on devices like the Jetson Nano and
Raspberry Pi 3B+ [5]. Similarly, EfficientDet poses deployment challenges on platforms
like the NXP i.MX8M Plus due to its computational complexity and difficulty with INT8
quantization [34]. In contrast, YOLOv5n offers an architecture that is well-suited to INT8
quantization and has demonstrated stable, real-time performance across FPGA, NPU,
and GPU platforms. This makes it a strong candidate for edge inference tasks in critical
infrastructure scenarios, ensuring consistency across all target hardware.

YOLOv5 [35] is a convolutional neural network designed for object detection in real
time by Ultralytics. It is part of the YOLO family, a series of computer vision models known
for their speed and accuracy. YOLOv5, despite not being developed by the original creators
of YOLOv1-v4, has become highly popular due to its ease of use and high performance.
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The YOLOv5 network has several variants that differ in terms of model size and that
affect accuracy and inference time. This means that smaller models are faster but less
accurate, while larger models are slower but more accurate. Those variants are YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. For this project, since the goal is to
implement the network on embedded systems with limited resources and low power
consumption, the YOLOv5n variant has been implemented. Table 1 shows the different
YOLOv5 variants with their size, inference time on a V100, and their accuracy on COCO.

Table 1. YOLOv5 variants with their size, inference time on a V100 and their accuracy on COCO [35].

Model Size (MBFP16) Parameters (M) mAPCOCO

YOLOv5n (Nano) 4 1.9 28.0
YOLOv5s (Small) 14 7.2 37.4
YOLOv5m (Medium) 41 21.2 45.4
YOLOv5l (Large) 89 46.5 49.0
YOLOv5x (XLarge) 166 86.7 50.7

To enable the model to be implemented across all platforms, some changes have been
made to the model’s structure. First, the original SiLU activation functions are replaced with
LeakyReLU activation functions with a negative slope of 26/256 to ensure compatibility
across all platforms while maintaining acceptable performance. For the model to be imple-
mented on the FPGA, a second modification is required. As the Vitis-AI compilation and
quantization tool does not support the permute and view functions, the last layer of the
detection head will be removed from the model, and this part will later be implemented on
the CPU.

This step was carried out manually as the Vitis-AI toolchain does not currently support
specific PyTorch v.1.13.1 operations such as permute and view. As a result, the final
detection head had to be detached from the model graph and handled in post-processing
on the CPU. This represents a platform-specific intervention, in contrast to the largely
automated pipelines used for the i.MX93 and Jetson Orin Nano.

As a result, the network runs with modified activation functions on both the Orin
Nano and i.MX93 platforms, while on the KV260, it not only has the modified activations
but also lacks the final detection layer, which is instead executed on the CPU. This means
that inference execution times on the KV260 depend not only on the DPU but also partially
on the CPU.

3.2. Dataset and Training

The dataset that had been used for fire detection is D-Fire [36]. This dataset contains a
total of 21,527 images and annotations in YOLO format. For each image, there is a corre-
sponding txt file with the annotations for that image. The dataset has two classes, named
‘fire’ and ‘smoke’, so the resulting network will be capable of detecting fire and smoke. Of
the 21,527 images in the dataset, 1164 images contain only fire, 5867 contain only smoke,
4658 contain both smoke and fire, and finally, there are 9838 images that contain neither.
In total, across all images, there are 14,692 fire predictions and 11,865 smoke predictions.
Table 2 presents the distribution of images by category in the D-Fire dataset.

The dataset was divided into three main subsets: training (17,221 images, 80%), vali-
dation (3306 images, 15%), and testing (1000 images, 5%). In addition to this standard split,
an additional “evolve” folder was created, which was further subdivided into three subsets:
training (900 images), validation (100 images), and testing (100 images). The images in the
“evolve” set are copies of the original dataset, but each of them contains at least one detection.
Table 3 shows the distribution of the dataset subsets.
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The training process was carried out using the YOLOv5 tools on a high-performance
computer with an NVIDIA GeForce RTX 4080 SUPER. The training was performed using
the default hyper-parameters provided by the YOLOv5 training libraries. Table 4 presents
the precision values obtained with the trained model. These values were calculated using
YOLO’s evaluation libraries on the validation subset of the dataset.

Table 2. Distribution of images by category in the D-Fire dataset.

Category Images Percentage

Fire only 1164 5.4%
Smoke only 5867 27.3%

Fire & Smoke 4658 21.6%
No fire/No smoke 9838 45.7%

Total 21,527 100%

Table 3. Distribution of the D-Fire dataset subsets, including the number of images and their
corresponding percentage of the total.

Subset Images Percentage

Training 17,221 80%
Validation 3306 15%

Testing 1000 5%

Total 21,527 100%

Table 4. Performance metrics of YOLOv5n trained with D-Fire and measured on validation subset.

Class Image Instances Precision Recall mAP@50 mAP@50:95

all 3301 4076 76.7 70.7 77.3 42.0
smoke 3301 1691 84.2 70.9 79.7 45.9

fire 3301 2385 69.1 70.5 74.7 38.0

3.3. Embedded Platforms

In this study, we aim to evaluate the performance of a neural network implementation
on three different hardware platforms: NXP i.MX93, Xilinx Kria KV260, and NVIDIA Jetson
Orin Nano. These platforms were chosen to obtain a heterogeneous and representative
mix of computing architectures, including ARM-based CPUs, FPGA-based accelerators,
and embedded systems equipped with NPUs and GPUs. Each platform offers unique
capabilities and optimization opportunities for the deployment of machine learning models,
which makes them suitable candidates for comparative analysis. The primary goal of this
section is to provide a detailed description of the hardware used.

3.3.1. Kria KV260

The KV260 is a hardware platform built for the implementation of artificial vision
systems with convolutional neural networks. The board consists of two different parts: the
central system-on-module (SoM) and the carrier card.

The K26 SoM is optimized for edge vision applications that require flexibility to
adapt to changing requirements. It is based on the Zynq UltraScale+ MPSoC (XCK26)
architecture, which consists of two parts: the processing system (PS), which includes,
among other components, a Quad-core Cortex-A53, a Dual-core Cortex-R5F, and an Arm
Mali-400 MP2, and the Programmable Logic (PL), which contains a specifically designed
FPGA for the K26 SoM.
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For neural network inference acceleration, a Xilinx B4096 DPU is implemented in the
SoC’s FPGA. The DPU has a DPUCZDX8G_ISA1_B4096 architecture and a clock speed of
300 MHz. This DPU communicates with the PS part of the SoC via AXI and can achieve
1.2 TOPS.

3.3.2. i.MX93

The Variscite VAR-SOM-MX93 Development Kit is used to work with the i.MX93.
This hardware features a VAR-SOM-MX93 SoM as its central unit, which integrates the
NXP i.MX93 processor. This embedded processor consists, among other components,
of an Arm Cortex-A55 MPCore cluster and an Arm Cortex-M33 platform, providing a
balance between high-performance computing and low-power real-time processing for
embedded applications.

Additionally, the i.MX93 integrates the Arm Ethos-U65 (256) NPU, which is designed
to efficiently accelerate machine learning workloads in AI-on-the-edge applications. This
NPU can perform at 1GHz up to 512 GOPS [37].

3.3.3. Jetson Orin Nano

For the GPU implementation, a Jetson Orin Nano is used. It has an Arm® Cortex®-
A78AE v8.2 64-bit CPU, which serves as the central processing unit. This six-core, 64-bit
v8.2 processor provides an optimal balance between computational performance and
energy efficiency.

To accelerate neural network inference, the Jetson Orin Nano integrates an NVIDIA
Ampere-based GPU with 1024 CUDA cores and 32 Tensor cores. This GPU architecture
is designed to optimize parallel computation and deep learning workloads, being able to
achieve a maximum performance of 67 TOPS at INT8 precision [38].

3.4. Conversion and Quantization

To deploy the model on the selected hardware platforms, it was necessary to con-
vert the original model into compatible formats for each architecture. This process in-
volved both model quantization and format conversion to optimize performance while
maintaining detection accuracy. In this study, post-training quantization (PTQ) was used
across all platforms, as it provides a toolchain-compatible and hardware-agnostic solu-
tion. However, we acknowledge that more advanced model-aware techniques, such as
quantization-aware training (QAT), could help reduce accuracy degradation by better
adapting the model during training to low-precision arithmetic. The following subsections
describe the methodology used for each platform to transform the YOLOv5n model into an
implementable model.

3.4.1. Kria KV260

To run the YOLOv5n network on the KRIA KV260, the model must first be quantized.
For this process, the vai_q_pytorch tool is used, a Python package from the Vitis-AI Quan-
tizer designed as an extension for PyTorch. This package allows the quantized model to
be exported in various formats, including XMODEL, PyTorch, and ONNX. However, since
XMODEL cannot be run on a PC to calculate the accuracy of the quantized model, ONNX is
used instead.

Once quantized, the model must be compiled into a format that can be executed on
the FPGA’s DPU. Since there are different types of DPUs and they are configurable, the
model compilation must take into account the specific configuration of the target DPU.
This compilation step uses the vai_c_xir package, another Python package from Vitis-AI,
which uses the provided DPU fingerprint and the quantized XMODEL to generate a new
XMODEL with executable operations tailored to the specific DPU configuration.
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3.4.2. i.MX93

The model must first be exported to TFLite format to run the YOLOv5n network
on the i.MX93 NPU. Additionally, the model needs to be quantized to utilize uint8 data
types, ensuring compatibility with hardware acceleration. The YOLOv5 framework is used
to export and quantify the model. Finally, the quantized model must be converted into
a format supported by the Ethos-U NPU integrated into the i.MX93. This conversion is
performed using the Vela optimization tool, which exports a new TFLite with operations
that are executable on the NPU.

TensorFlow 2.12 has been observed to provide optimal inference performance with
YOLOv5n and was specifically chosen after detecting incorrect bounding box outputs when
using more recent versions such as 2.15 and 2.17. This issue occurred during inference after
converting the model from PyTorch or ONNX format to TensorFlow format, resulting in
visibly inaccurate detection results that affected model reliability. Although a systematic
benchmark across TensorFlow versions was not conducted, switching to version 2.12
consistently resolved the problem, producing correct and stable outputs. This behavior has
also been reported by other developers in community forums [39], which further supports
the selection of TensorFlow 2.12 as a stable baseline for deployment on the i.MX93 platform.

3.4.3. Jetson Orin Nano

To run a model on the NVIDIA Jetson Orin Nano GPU, the model must first be
exported to ONNX, then quantized and exported to the engine format. Although the GPU
supports various formats such as PT or ONNX, the engine format has been used, as it is
NVIDIA’s optimized format for executing models on the GPU.

The FP32 model provides higher precision. However, it results in a larger network
size, which may result in longer inference time or higher power consumption. Conversely,
the INT8 model reduces network size and may provide faster inference times, but it can
also lead to a decrease in precision. For the comparison in this article, the INT8 network
was chosen, as the other platforms require network quantization.

To export the model to ONNX, the YOLOv5 framework is used. Then, the polygraphy
library is used to quantize and convert the network to engine format. For this task, a
representative dataset is used for image calibration in the quantization process.

3.5. Model Accuracy Analysys

Precision is a key metric for evaluating the performance of object detection models
such as YOLOv5n. In real-world applications, a high-precision score ensures that detected
objects are correctly classified, minimizing false positives. This is particularly important in
scenarios where misclassification can have significant consequences, such as fire detection.
The mAP is the standard metric for assessing object detection models, as it provides a
comprehensive measure of both precision and recall.

Precision measures the proportion of correctly detected objects among all detections,
indicating how reliable the model is in minimizing false positives. It is defined as:

Precision =
TP

TP + FP
(1)

where TPs (true positives) are correctly detected objects, and FPs (false positives) are
incorrect detections. Recall, on the other hand, quantifies the model’s ability to detect all
relevant objects, reducing false negatives, and is given by:

Recall =
TP

TP + FN
(2)
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where FNs (false negatives) are objects that were missed by the model. High precision
ensures fewer false alarms, while high recall ensures that most objects are detected.

The mAP is computed by averaging the average precision (AP) across all classes,
integrating the precision–recall curve. A higher mAP indicates a better balance between
accurate detections and minimal false positives, ensuring the model performs consistently
across different object categories.

To evaluate the performance of our YOLOv5n model implementations on each plat-
form, we used PyCocoTools, a library designed to compute object detection metrics follow-
ing the COCO evaluation standard. PyCocoTools provides a standardized method to com-
pute precision, recall, and mAP at different intersection over union (IoU) thresholds, ensur-
ing a robust assessment of model performance. We calculate mAP@50 (mAP at IoU = 0.5)
and mAP@50:95 (mean AP over IoU thresholds from 0.5 to 0.95 in steps of 0.05) in three
phases: with the trained model, the quantized model, and the model implemented on each
hardware platform.

For the first two phases (trained and quantized models), we use the built-in YOLO
libraries to compute mAP. However, to evaluate performance on hardware platforms, we
developed a custom application using PyCocoTools to measure mAP. During inference on
the hardware platforms, detection results are saved as txt files in YOLO format, containing
the predicted bounding boxes. These predictions are then compared to the ground truth
annotations to compute the final mAP, allowing for an objective assessment of the model’s
performance across different deployment environments.

3.6. Power Consumption Analysys

Power consumption is a critical factor in embedded AI platforms, as these devices often
operate under strict energy restrictions in edge computing environments. To evaluate the
power efficiency of these three embedded AI platforms—Xilinx Kria KV260, NXP i.MX93,
and NVIDIA Jetson Orin Nano—a rigorous and reproducible framework is established to
quantify both idle and active power consumption during inference execution. A controlled
experiment was conducted, in which each device performed 1000 inference operations
while real-time power measurements were logged. This approach ensured consistency,
minimized variability, and provided a direct, data-driven comparison of energy efficiency
across the platforms evaluated.

To ensure consistent and accurate power measurements, we employed an Agilent
Technologies N6705B DC Power Analyzer equipped with an N6752A high-performance
DC power module. The embedded devices were powered directly from the analyzer,
allowing for precise monitoring of real-time current (I) in Amperes. Power (P) and energy
consumption values were then computed based on the logged current and voltage data. It
is important to note that the measurements include the total power consumption of the
embedded system, comprising both the system on module (SoM) and the carrier board. As
such, the reported power values reflect the consumption of the entire device rather than
isolating the SoC or accelerator core. This approach provides a realistic view of the power
requirements under typical deployment conditions but may differ from studies that isolate
specific power rails or components.

The analyzer was configured to log real-time current (I) in Amperes, which made it
possible to calculate power and energy values. The power consumption was calculated
using the relationship below, where P(t) is the instantaneous power, V is the known supply
voltage, and I(t) is the measured current at time t.

P(t) = V · I(t) (3)



Electronics 2025, 14, 1809 11 of 24

The total energy consumption over time was then obtained by integrating the power
over the execution period, where ∆t represents the sampling interval of the power analyzer:

E = ∑ P(t) · ∆t (4)

The concept of energy per inference Ei measures the average amount of energy re-
quired to complete a single inference. In this context, the total energy consumption (E)
includes the inference stage, as well as the associated pre-processing and post-processing
steps. To calculate the energy per inference, the total measured energy is divided by the
total number of inferences performed (Ni):

Ei =
∑ P(t) · ∆t

Ni
=

E
Ni

(5)

Before running the AI inference task, we measured the baseline (idle) power con-
sumption to establish a reference. Next, we activate the inference process and record the
power consumption under load (active state). By comparing these two measurements, we
isolate the power consumed by the AI workload itself. This procedure is repeated for all
1000 inferences to compute average and total energy values.

For each device, the following key metrics were extracted from the logged data:

• Execution Time (∆t, s): Total duration of the inference task.
• Total Energy Consumption (J): Energy consumed during the entire execution period.
• Energy per Inference (J): Average energy required for a single inference.
• Active Power Consumption (W): Average power drawn during inference execution.
• Idle Power Consumption (W): Average power drawn when no inference is running.
• Peak Power Consumption (W, max & min): Maximum and minimum observed power

spikes during execution.

These metrics allow a comparative analysis of energy efficiency across the three
embedded platforms.

4. Results
To compare the performance of the YOLOv5n model across the three selected hardware

platforms, we analyze results based on key metrics: detection accuracy, inference time,
and power consumption. As the test conditions were standardized across all devices,
the following subsections present a detailed breakdown of each performance dimension,
highlighting trade-offs between computational efficiency and energy use.

4.1. Precision Metrics

Due to the different quantization and conversion methods applied to adapt the
YOLOv5n models for each hardware platform, variations in precision have been observed.
These differences stem from how each platform handles numerical representation, opti-
mization techniques, and computational constraints, which can impact the accuracy of
object detection.

The precision metrics of the YOLOv5 model will be evaluated in three phases for
each model on each hardware platform. The first phase assesses the trained model, the
second evaluates the quantized model, and the final phase measures the performance of the
converted model. Both trained and quantized models are executed on the PC’s CPU using
the YOLO framework, while the converted models are executed on each target hardware
using the corresponding framework. However, for the Jetson Orin Nano, since its adaptation
process simultaneously quantizes and converts the model, only the trained model can be
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tested on the PC’s CPU, while the quantized and converted model is evaluated directly on
the hardware.

To measure accuracy in mAP, the YOLO framework is used for models executed on
the computer, while a custom application that uses pycocotools is used for models executed
on the embedded platforms. These differences in the execution and the mAP measurement
methods between the PC and the embedded boards may cause slight discrepancies between
the results obtained on the PC and those obtained on the platforms.

Table 5 presents the precision metrics (mAP) of the YOLOv5 model evaluated in
three stages: trained, quantized, and converted. The results show that quantization leads
to a reduction in mAP, which is expected because of the lower numerical precision of
weights and activations. The impact of quantization varies, but in all cases, the converted
model retains a similar performance to the quantized model, indicating that adaptation
to the target hardware does not introduce significant additional losses. The mAP@50:95
values show a more pronounced decrease compared to mAP@50, highlighting the increased
difficulty of maintaining high precision across all IoU thresholds after quantization and
conversion. Overall, these results confirm that quantization affects model precision, but the
conversion process maintains the performance achieved after quantization.

Table 5. Object detection performance across different platforms: Comparison of mAP in trained,
quantized, and converted models.

Trained (PC) Quantized (PC) Converted (HW)

KV260 mAP@50 68.3 64.8 64.8
mAP@50:95 35.7 30.8 31.0

i.MX93 mAP@50 68.3 62.3 63.6
mAP@50:95 35.7 30 29.3

Jetson Orin Nano mAP@50 68.3 – 66.3
mAP@50:95 35.7 – 32.8

4.2. Inference Time

The inference time will be considered solely as the time during which the neural
network is executed. The times for image pre-processing and post-processing (Non-Max
Suppression and drawing bounding boxes) will be excluded. This choice was made to
isolate the pure inference latency and ensure a fair, hardware-level comparison across plat-
forms, since pre- and post-processing steps can vary significantly depending on the specific
deployment framework, optimization strategies, and hardware capabilities. However, we
acknowledge that in real-time applications, total end-to-end latency is critical and will be
addressed during deployment testing.

Since running the model on the FPGA required removing the last layer of the detection
head and implementing it in software, the execution times will be measured separately for
two cases: the full process, which includes both the DPU execution and the additional layer
running on the CPU, and the standalone execution time of the DPU alone. Table 6 presents
the inference time comparison across different embedded platforms.

Table 6. Inference time comparison across different embedded platforms.

Processor Min (ms) Max (ms) Avg (ms) Warm-Up (ms)

DPU 22.5 25.3 22.7 23.8
DPU + CPU 51.8 56.7 52.1 53.5

NPU 32.2 34.6 32.4 32.8
GPU 2.5 4.7 3.1 107.4
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The results reveal notable inference time differences between platforms. The GPU
demonstrates the lowest execution time, with an average of just 3.1 ms. However, its
warm-up time is significantly higher at 107.4 ms, indicating that while the GPU excels
in continuous inference, it may not be optimal for applications requiring intermittent
execution. The DPU, when running standalone, offers a balanced execution time of 22.7 ms,
which increases to 54.7 ms when the additional CPU processing is included.

The NPU shows intermediate performance with an average execution time of 32.4 ms,
making it slower than the standalone DPU but faster than the full FPGA (DPU+CPU)
inference. In both, the warm-up time is relatively low compared to the GPU, which could
be advantageous in scenarios where fast initialization is required.

4.3. Consumption

The power consumption results for the evaluated platforms revealed notable differ-
ences in energy efficiency, execution time, and power consumption during the AI inference
process. Measurements include total execution time, total energy consumed, energy per
inference, average active and idle power consumption, and peak power consumption.
The following sections examine each platform individually before presenting overarching
conclusions at the end.

4.3.1. Kria KV260

During the execution of 1000 AI inferences, the KV260 recorded an execution time of
151.29 s, with a total energy consumption of 1323.53 J, resulting in an energy per inference of
1.32 J. The system consumed an average of 8.75 W while active and 8.12 W when idle. Peak
power measurements ranged from 7.95 W (minimum) to 13.33 W (maximum), highlighting
the platform’s dynamic power fluctuations during inference execution. The Table 7 presents
the Xilinx KV260 power consumption metrics.

Table 7. Xilinx Kria KV260 power consumption metrics.

Metric Value

Execution Time (∆t, s) 151.29
Total Energy Consumption (J) 1323.53

Energy per Inference (J) 1.32
Active Power Consumption (W) 8.74

Idle Power Consumption (W) 8.12
Max Peak Power Consumption (W) 13.33
Min Peak Power Consumption (W) 7.95

It is important to note that, for consistency across platforms, the fan of the Kria KV260
was disconnected during energy measurements. This decision was made to isolate and
accurately benchmark the power consumption of the SoC and the carrier board, which are
the key components under evaluation. Including the fan would have introduced additional
variability unrelated to computational performance, potentially obscuring meaningful com-
parisons between platforms. While this setup provides a fair and controlled environment
for benchmarking, it does not fully represent typical deployment conditions, where the
fan is normally active. The fan’s power draw—measured separately at approximately
0.63 W—should be considered in practical use cases. Nonetheless, it is worth noting that
the Kria KV260’s thermal performance could be improved through alternative passive
cooling solutions, such as enhanced heat sinks or heat-pipe-based designs. These strategies
could eliminate the need for active cooling in certain embedded scenarios, making the
platform more viable for energy-constrained deployments. We encourage system designers
to weigh these thermal and power trade-offs based on the target use case.
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Consumption data have been captured throughout the inference process, including
idle states before and after algorithm execution, as well as detailed expanded views of
power fluctuations over shorter time periods.

The Figure 1 represents the complete inference process, showing a transition from idle
to active execution and back to idle. Power consumption starts at around 8.1 W during the
idle phase and increases to an average of 8.75 W during inference, with frequent power
spikes reaching up to 13.33 W. This fluctuation indicates dynamic workload variations as
the FPGA processes different inference tasks.

Figure 1. Power consumption of the Xilinx Kria KV260 during the full inference execution process.

The Figure 2 provides a closer look at a 1-s interval within the inference execution.
Power consumption shows rapid fluctuations, with frequent spikes above 12 W. These
oscillations suggest that power consumption varies significantly at the millisecond level,
surely influenced by variations in computational load during individual inferences.

Figure 2. Zoomed-in power consumption of the Xilinx Kria KV260 within a 1-s interval during
inference execution.

The Figure 3 further zooms in on a 200 ms segment, offering a high-resolution per-
spective of the short-term power variations. Here, individual power peaks become more
distinguishable, highlighting the rapid transitions between lower-power and peak-power
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states. This fine-grained view provides insight into the FPGA’s workload scheduling and
power management during inference execution.

Figure 3. Detailed power consumption of the Xilinx Kria KV260 over a 200 ms interval.

4.3.2. i.MX93

The same test of 1000 AI inferences was performed on the NXP i.MX93, which recorded
an execution time of 110.55 s, with a total energy consumption of 236.82 J, resulting in an
energy per inference of 0.237 J. The system consumed an average of 2.14 W when active and
1.65 W when idle. Peak power measurements ranged from 1.55 W (minimum) to 3.17 W
(maximum), demonstrating a low power profile compared to the other evaluated platforms.
The Table 8 presents the NXP i.MX93 power consumption metrics.

Table 8. NXP i.MX93 power consumption metrics.

Metric Value

Execution Time (∆t, s) 110.55
Total Energy Consumption (J) 236.81

Energy per Inference (J) 0.23
Active Power Consumption (W) 2.14

Idle Power Consumption (W) 1.64
Max Peak Power Consumption (W) 3.16
Min Peak Power Consumption (W) 1.54

The Figure 4 represents the complete inference process, showing a transition from idle
to active execution and back to idle. The power consumption starts at around 1.65 W in the
idle phase and increases to an average of 2.14 W during inference. The power fluctuations
are relatively minor compared to the Kria KV260, with occasional peaks reaching 3.17 W.
This steady power profile suggests that the i.MX93 prioritizes low-energy operation over
peak performance.

The Figure 5 provides a closer look at a 1-s interval within the inference execution.
Power consumption exhibits modest variations, fluctuating around 2.2–2.6 W, with occa-
sional peaks slightly exceeding 2.8 W. Unlike the Kria KV260, which showed rapid and
frequent spikes, the i.MX93 maintains a more consistent power consumption pattern, likely
due to its efficient power management.

The Figure 6 further zooms in on a 200 ms segment, revealing short-term power
variations. While there are small fluctuations, the power profile remains relatively stable,
with fewer sharp peaks compared to other platforms. This suggests that the i.MX93
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efficiently manages its power consumption, avoiding significant spikes. Unlike the Xilinx
case, it is difficult to analyze when inferences occur.

Figure 4. Power consumption of the NXP i.MX93 during the full inference execution process.

Figure 5. Zoomed-in power consumption of the NXP i.MX93 within a 1-s interval during inference
execution.

Figure 6. Detailed power consumption of the NXP i.MX93 over a 200 ms interval.
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4.3.3. Jetson Orin Nano

When executing 1000 AI inferences, the NVIDIA Jetson Orin Nano took 35.72 s to
complete, consuming 223.86 J of total energy, resulting in 0.224 J per inference. This result
aligns closely with the findings of [33], who reported an energy consumption of 0.185 J per
inference for the YOLOv8n model on the same hardware platform. The system exhibited
an average active power consumption of 6.27 W and an idle power consumption of 3.77 W.
During execution, power usage ranged from 3.57 W to a peak of 11.44 W, indicating sig-
nificant variations in power demand during inference. The Table 9 presents the NVIDIA
Jetson Orin Nano power consumption metrics.

Table 9. NVIDIA Jetson Orin Nano power consumption metrics.

Metric Value

Execution Time (∆t, s) 35.72
Total Energy Consumption (J) 223.85

Energy per Inference (J) 0.22
Active Power Consumption (W) 6.26

Idle Power Consumption (W) 3.76
Max Peak Power Consumption (W) 11.43
Min Peak Power Consumption (W) 3.57

Consumption data have been recorded throughout the inference process, including
idle states before and after execution, as well as detailed zoomed-in views of power
fluctuations over shorter time periods.

The Figure 7 represents the complete inference process, showing a transition from idle
to active execution and back to idle. Power consumption starts at around 3.77 W in the
idle phase and increases to an average of 6.27 W during inference, with frequent spikes
reaching up to 11.44 W.

Figure 7. Power consumption of the NVIDIA Jetson Orin Nano during the full inference execution
process.

The Figure 8 provides a closer look at a 1-s interval within the inference execution.
The power draw exhibits high-frequency oscillations, with multiple peaks exceeding 10 W.
This suggests a highly dynamic power profile, likely due to rapid bursts of computation
when processing individual inferences.
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Figure 8. Zoomed-in power consumption of the NVIDIA Jetson Orin Nano within a 1-s interval
during inference execution.

The Figure 9 further zooms in on a 200 ms segment, providing insight into the short-
term power variations. Unlike the NXP i.MX93, which demonstrated a stable power profile,
the Jetson Orin Nano exhibits frequent and sharp spikes. This behavior suggests an ag-
gressive power management approach; the device dynamically scales power consumption
based on real-time processing needs. Unlike i.MX93, this model makes it very easy to
identify when an inference is taking place and to distinguish between pre-processing and
post-processing computing.

Figure 9. Detailed power consumption of the NVIDIA Jetson Orin Nano over a 200 ms interval.

4.3.4. Comparison and Conclusions

The power consumption characteristics of the Xilinx Kria KV260, NXP i.MX93, and
NVIDIA Jetson Orin Nano are summarized Table 10.

Figure 10 provides a global view of the power consumption for each platform through-
out the entire inference execution. The Xilinx Kria KV260 has the highest power consump-
tion, averaging 8.75 W in active mode, with peaks exceeding 13 W. The NVIDIA Jetson Orin
Nano exhibits a lower average power draw of 6.27 W, yet frequent fluctuations and peaks
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up to 11.44 W suggest aggressive power scaling. In contrast, the NXP i.MX93 maintains the
lowest energy profile, averaging 2.14 W with minimal variations.

Table 10. Power consumption comparison metrics.

Metric Xilinx NXP NVIDIA

Execution Time (∆t, s) 151.29 110.55 35.72
Total Energy Consumption (J) 1323.53 236.81 223.85

Energy per Inference (J) 1.32 0.23 0.22
Active Power Consumption (W) 8.74 2.14 6.26

Idle Power Consumption (W) 8.12 1.64 3.76
Max Peak Power Consumption (W) 13.33 3.16 11.43
Min Peak Power Consumption (W) 7.95 1.54 3.57

Figure 10. Power consumption comparison of all platforms during full inference execution.

Beyond power consumption, execution time varies widely between platforms. The
Jetson Orin Nano completes the 1000 inferences in 35.72 s, significantly outperforming
both the i.MX93 (110.55 s) and Kria KV260 (151.29 s). This difference directly affects total
energy consumption, where the KV260 expends 1323.53 J, nearly six times the 223.86 J
required by the Jetson Orin Nano for the same workload. The NXP i.MX93, despite its
lower power draw, consumes 236.82 J, slightly more than the Jetson Orin Nano due to its
longer execution time.

Energy per inference is a key metric for evaluating efficiency, which quantifies how
much energy is required for each AI computation. NVIDIA Jetson Orin Nano proves to be
the most energy-efficient, consuming only 0.22 J per inference, closely followed by NXP
i.MX93 at 0.24 J. Xilinx Kria KV260, however, consumes significantly more energy per
inference (1.32 J), highlighting its higher energy cost per operation.

Figure 11 presents a zoomed-in comparison over a 1-s interval, revealing power
fluctuations at a finer scale. The KV260 maintains a high baseline power level with moderate
fluctuations, while the Jetson Orin Nano exhibits frequent, high-amplitude power spikes.
This suggests a dynamic power scaling strategy where power consumption is rapidly
adjusted based on computational demand. NXP i.MX93, in contrast, remains remarkably
stable, exhibiting small variations in power draw.

A further high-resolution view of a 200 ms interval is provided in Figure 12. The
Jetson Orin Nano continues to exhibit frequent sharp peaks, with power draw exceeding
10 W at regular intervals. The Kria KV260 remains relatively stable at a high-power level,
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with occasional fluctuations, while the NXP i.MX93 maintains a consistently low power
profile, reinforcing its suitability for energy-constrained applications.

Figure 11. Zoomed-in power consumption comparison over a 1-s interval.

Figure 12. Detailed power consumption comparison over a 200 ms interval.

These results highlight the trade-offs between performance, power consumption, and
energy efficiency across the evaluated platforms. The Xilinx Kria KV260, while delivering
FPGA-based acceleration, operates with the highest power demand and energy cost per
inference. The NVIDIA Jetson Orin Nano is a high-performance solution that completes
inference faster while maintaining competitive power efficiency. The NXP i.MX93, although
slower than the Jetson, demonstrates exceptional energy efficiency, making it an optimal
choice for ultra-low-power applications.

5. Discussion
The findings of this study provide valuable insights into the deployment of the

YOLOv5n deep learning model for fire and smoke detection on embedded edge devices,
highlighting the trade-offs between detection accuracy, inference time, and power consump-
tion. The study underscores the importance of selecting hardware based on the specific
constraints and requirements of the target application.
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One of the key observations is the impact of quantization on detection accuracy. The
evaluation of precision metrics across different stages of the model adaptation process
shows that quantization is the main factor contributing to a reduction in accuracy. This
decrease is expected, as quantization reduces the numerical precision of weights and acti-
vations to improve computational efficiency. However, once the model has been quantized,
the subsequent conversion to the target hardware does not introduce significant additional
losses. This suggests that the optimization frameworks used for hardware adaptation
effectively preserve the performance of the quantized model. These methods could help
improve the post-quantization performance of models deployed on NPUs and DPUs,
bridging the gap between precision and computational efficiency.

Another important factor is power consumption. The i.MX93 demonstrated excep-
tional energy efficiency, consuming only a mean active power consumption of 2.14W, mak-
ing it an ideal candidate for applications requiring long-term operation in battery-powered
systems. In contrast, the KV260 exhibited the highest mean active power consumption
(8.74 W). It is important to note that the power consumption values reported in this study
correspond to the evaluation boards with their respective carrier cards.

Regarding the Kria KV260, it is worth noting that the fan was disconnected during mea-
surements to avoid distortion in energy comparisons. While this setup reflects an idealized
case, the thermal requirements of the platform could be addressed through improved pas-
sive cooling, potentially avoiding the need for active components in embedded scenarios.

Inference speed is a critical factor in real-time fire detection systems, and the results
reveal significant differences between the evaluated platforms. The Jetson Orin Nano
achieved the fastest execution time, with an average of 3.1 ms per inference, making
it highly suitable for latency-sensitive applications. However, its high warm-up time
(107.4 ms) may limit its efficiency in scenarios where sporadic or event-driven inference
is required. The i.MX93, while significantly slower (32.4 ms average), demonstrated
more consistent performance and low energy consumption, making it a viable option for
battery-powered applications where power efficiency is prioritized over speed. The Kria
KV260 FPGA, when inference was performed solely on the DPU, achieved an average
execution time of 22.7 ms, but when the required CPU processing was included, the total
time increased to 54.7 ms. The entire YOLOv5n model could not be executed entirely on
the FPGA and required additional processing on the CPU.

Although the primary evaluation in this study focused on the YOLOv5n model due
to its lightweight architecture and suitability for low-power deployment, we also tested
the YOLOv5s variant. However, it required more than twice the inference time for only a
2.4% gain in mAP, which reinforced the decision to select YOLOv5n as the most balanced
model for this benchmarking. The decision to focus on a single-model architecture was
intentional, aiming to isolate the influence of hardware characteristics under consistent
application conditions. Unlike other networks such as MobileNet or EfficientDet, YOLOv5
was selected for its compatibility and deployability across all three hardware platforms
without major structural modifications, ensuring a fair and reproducible comparison.

The model has been trained only with the D-Fire dataset. This dataset is sufficient
to compare the effectiveness of the three platforms, but if the model were to be deployed
in a real use case, its detection capabilities would need to be improved. The accuracy
data do not reflect how the model would perform in a real-world environment. Accuracy
could be improved by adding more datasets or generating custom datasets. The most
effective approach would be to create custom datasets with images that closely resemble
the environment and conditions in which the model would operate.

Despite the fact that the system has not yet been tested with real tunnel footage, a
deployment in a controlled real-world environment is planned as part of this project, in
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collaboration with a public entity responsible for road infrastructure in the Basque Country.
Due to the critical nature of these facilities, further details cannot be disclosed, but the tests
will provide valuable validation under realistic conditions.

6. Conclusions
This study evaluated the implementation of the YOLOv5n neural network for fire

and smoke detection in critical infrastructures between three embedded edge platforms:
Xilinx Kria KV260 (DPU), NXP i.MX93 (NPU), and NVIDIA Jetson Orin Nano (GPU). The
comparative analysis focused on key performance metrics, including detection accuracy,
inference time, and power consumption, to assess the trade-offs between computational
efficiency and energy efficiency.

The results highlight significant differences in platform performance. The NVIDIA
Jetson Orin Nano achieved the best mAP@50 accuracy and the highest inference speed, with
an average execution time of 3.1 ms, making it the most suitable choice for very fast real-
time applications. In contrast, the Xilinx Kria KV260 demonstrated competitive accuracy
and inference time, but exhibited the highest mean active power consumption (8.74W),
making it less efficient for low-power applications. The NXP i.MX93, while slower than the
Jetson Orin Nano, proved to be the most energy-efficient platform, consuming only 2.14W
in active mode, reinforcing its suitability for battery-powered or resource-constrained
environments.

These results suggest that the optimal platform choice depends on the specific ap-
plication constraints. The Jetson Orin Nano is preferable for real-time, high-performance
scenarios, while the i.MX93 is ideal for energy-constrained environments. If we consider
the specific use case of fire and smoke detection using battery-powered embedded systems,
the best option among the three platforms would be the i.MX93. This is mainly because it
is the most power-efficient.

Although the Jetson Orin Nano achieves better results in terms of accuracy and speed,
these factors are not the most critical. If the goal is to detect and alert the presence of fire in
tunnels, a few milliseconds will not make a significant difference, nor will having extremely
precise localization of the fire. However, the ability of the system to operate for extended
periods of time without draining the battery could be a deciding factor.

While this study focused on benchmarking embedded platforms for fire and smoke
detection, several critical aspects remain for future exploration to support real-world
deployment. Model life-cycle management—particularly in the context of emerging reg-
ulations such as the European Cyber Resilience Act—will be addressed by integrating
secure, lightweight update mechanisms like SWUpdate. Additionally, we aim to assess
the model’s robustness under challenging visual conditions, including occlusion, noise,
and low lighting, using targeted robustness metrics. Beyond fire detection, the proposed
benchmarking methodology is applicable to other infrastructure monitoring scenarios, such
as intrusion or structural anomaly detection, leveraging the same energy—accuracy–latency
trade-off framework to guide broader edge AI adoption. These directions will help bridge
the gap between controlled evaluation and deployable, resilient, and scalable solutions.
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