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Highlights

What are the main findings?

e  Thermal object detection increases surveillance capabilities.
e Deploying a thermal surveillance system is a practical and economical solution.

What is the implication of the main finding?

e  Thermal detection can greatly complement other surveillance systems.
e  More thermal detection systems can be utilized.

Abstract

In recent years, an increasing interest in artificial intelligence applications in a widespread
spectrum of fields which include, among others, robotics, communications, artistic creations,
security and protection technologies, etc., has been observed. Of the latter categories, one
field which has largely benefitted is surveillance and security technologies. This fact
is combined with an increase in omnipresent automatic surveillance system installations
which pave the way to new technologies. Technologies that are being promoted are the ones
offering uninterrupted, robust, efficient and reliable operation. In this work, we examine
the ability of thermal automatic detection systems to fulfill their role as an essential part of
such a mechanism. The primary advantage of thermal detection is the potential to provide a
24-h uninterrupted detection service exploiting its innate robustness against environmental
or weather changes and shifts in illumination conditions. For providing a reliable security
mechanism, a second requirement is considered sine qua non: the efficiency of the system in
order to provide timely alerts for potential threats and incidents. In this work, we evaluate
various efficient object detection models operating solely in the thermal/infrared spectrum
to examine their role as potential backbone detectors in surveillance systems.

Keywords: critical infrastructure; object detection; surveillance; thermal; Infrared

1. Introduction

Object detection is one of the fundamental tasks in computer vision. Nevertheless,
the introduction of deep learning techniques and more specifically Convolutional Neural
Networks in recent years has leveraged the performance of the relevant models to unprece-
dented levels. The latter fact has permitted the introduction of detection techniques in
various automated solutions for surveillance and security purposes. Additionally, although
the primary field to apply such monitoring systems is the visual spectrum (RGB), there
are multiple cases where this obvious selection proved insufficient. Detection systems
operating in the visual spectrum have reached impressive levels of performance since the
introduction of the early stages of deep learning techniques. Pioneering works include
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Faster RCNN [1], Single Shot Detector (SSD) [2]—an innovative single-step network, and
You Only Look Once (Yolo)—an efficient oriented model [3]. Those works are based on
Convolutional Neural Networks which tend to dominate the detection field. Nevertheless,
other approaches also exist which utilize different architectures like Transformer. Carion
in [4] provided end-to-end architecture to train a transformer and provide a detection model.
In general, the works are focused on improving the detection ability while simultaneously
providing swift models with increased usability.

In fair weather and illumination conditions, the performance of those detection sys-
tems is unparalleled [5]. On the other hand, when the conditions are not thus favorable the
detection ability diminishes significantly. At those conditions a complementary system is
useful to provide detections. Missing objects due to low visibility is an unacceptable case
for robust protection systems and this is when thermal object detection is utilized. The
latter provides decent detecting capability in harsh weather and illumination conditions.
To further elaborate, harsh conditions might include foggy, misty or rainy weather, low
visibility might also include dawn, sunset or heavily cloudy weather, etc. [5]. In practice
thermal objects can operate under a large range of climatic conditions, including fair, cloudy,
dawn, misty, rainy and foggy weather with minimal impact on its detection ability. This
feature is unique compared to other visual detections. Additionally, specifically the thermal
cameras can operate without any external "light" source by detecting the thermal radiation
of each object, which provides an affordable alternative to the installation of multiple
light sources to illuminate the whole area around the monitored area [5]. Finally, another
advantage of thermal detection is the smaller image resolution of the cameras along with
the single-channel processing which can boost the processing time of the system.

Due to the increased interest of the community, a large number of datasets specifically
created have been published and utilized to promote the research on the generic object
detection field. This has aimed at the comparison of works and the progress in the field.
Datasets such as Common objects in context (Coco) [6] operate as benchmark datasets for
this purpose. On the thermal spectrum, unfortunately, there is not any massive dataset
which could uptake this role. In a study on the datasets being utilized in thermal detections,
almost three out of four works were reporting results in non-publicly available datasets [7].

For the purpose of this work, public datasets were utilized, which included thermal
images as the intention is to validate the credibility of thermal detectors as security tools.
In order to provide an easily maintainable and constructible application, the focus was
only on public datasets. Some of these datasets also contained visual images but only
the thermal part of the dataset was utilized, as is the case of FLIR-ADAS [8]. A certain
issue is the availability of objects of interest inside the public datasets. Within the aspect of
this work, only those relevant to the surveillance purposes were kept and all others were
discarded. Similarly, we have annotated relevant objects in cases these were not available.
The relevant classes included persons, cars, trucks, buses, motorcycles, bicycles and fires.
The person class is essential for every surveillance task as it is obvious. The next five classes
include the most commonly utilized vehicles and thus, they were considered indicative of
human presence and activity in the surveyed area. For this reason, they were also included
in the relevant detectable classes. Finally, instances of fire constitute one of the major threats
for infrastructures, installations, building and persons, and thus, it was incorporated to
the final classes of interest. Every instance of those objects was annotated in the dataset
being utilized.

Additionally, three different detection models were examined for the surveillance
task. Two of them were of the Yolo family, Yolov8 [9] and Yolov11 [10] while the third
one was from the transformer doctrine but specifically focusing on efficiency Real Time
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Detr (RT-Detr) [11]. The inclusion of three models permitted the research into the best
performing model under different parameters.

The main contributions of this paper are the research of the performance of efficient
real-time object detectors in the IR /thermal spectrum, in varying parameters and model
sizes. Additionally, the main question that this work attempts to answer is whether the
existing detection model can operate in a robust and reliable way in order to constitute the
backbone of a 24/7 thermal surveillance detection system.

This paper is organized as follows: an overview of related work is presented in the
following section. A small discussion of the unique features of IR/thermal radiation is
presented in Section 3. Section 4 discusses the datasets being utilized for this work, while
the next section aggregates the parameters being applied, the actual results and their
impact in the model selection. Finally, the last section, Section 6, concludes the paper and
summarizes the main ideas deducted from it.

2. Related Work

This work utilizes a deep learning approach for detection purposes but deploys its
algorithm solely on a thermal bandwidth, and thus, this section will summarize related
works in both of these fields. As mentioned in the Introduction, the emergence of deep
learning in the detection field has created many remarkable works. Initial approaches
focused on achieving better results but as the advancements accumulated, a large portion
of the innovative works shifted their focus on promoting efficient yet effective models. A
major chapter on these efficient models is the Yolo tradition. This tradition has created a
whole series of detectors [12] which have as their primary focus to provide a model which is
as efficient as possible. Each subsequent Yolo version attempts to include some innovation
in the architecture while maintaining its fast-processing ability [13].

The initial works were also almost exclusively based on Convolutional Neural Net-
works. Further implementations introduced newer architecture like visual transformers and
a discussion commenced [14]. Nowadays the best performance is achieved by visual trans-
formers, yet they typically require much data, are slower and more resource-consuming
than their counterpart. Examples are implementations like Co-Detr [15], which, although it
achieves state-of-the-art performance in datasets like Coco, failed to provide a lightweight
efficient model. A new generation of transformers attempted to crack into the efficient
models based on CNN, employing efficient alternatives to achieve real-time processing like
the aforementioned RT-Detr.

Regarding the other field of interest of this paper, thermal object detection, the initial
interest of the community focused primarily or even exclusively on human detection.
Although the reason for focusing primarily or even exclusively on person monitoring
might be traced back to the pre-deep learning era where the inclusion of many classes
of interest was quite a hard task to accomplish, there are also other practical causes. The
human presence per se is crucial and could provide valuable information and increase the
environmental awareness of the system. Nevertheless, detecting more classes is typically
more useful and can leverage the practical uses of the solution. A typical example is [16]
where the authors presented a system for thermal detection of persons and vehicles. This
work is pre-deep learning and thus, it utilizes machine learning techniques. Another
attempt at thermal detection is presented in [17], where the authors utilize a multi-camera
surveillance system based on the Yolov4 [18] model to monitor crowds in indoor places.

The authors of [5] created their own dataset to examine the thermal detection in
unfavorable weather conditions. The dataset included frames captured in clear, foggy
and rainy weather and primarily focused on detected persons in various positions (there
was a human vs. non-human—dog—task included also), while the detectors where all
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CNN-based models. An example of multi-person localization via the use of a Thermopile
sensor is presented in [19], comparing Yolov5 [20] and Detr [5] algorithms. The results are
anonymous by nature due to the low resolution of the sensor, but on the other hand, they
lack any clarity for visualization purposes.

In another work, [21], the authors utilized SSD with mobileNet v1 and v2 to detect
three classes, car, bicycle, and person, on FLIR-ADAS dataset v1. The lack of IR/thermal
extended datasets resulted in attempts to transfer features from the richer domain, such
as the visual one, in works like [22], where pseudo-multimodal pairs were generated in
order to improve performance. Researchers often attempt to improve the performance of
the developed applications, especially to achieve real-time performance, as in [23], where
the authors focused on vehicles’ detection in Infrared images utilizing a modified Yolov7
model [24].

One popular application for thermal object detection is Autonomous Driving. In [25],
the authors introduced a new VGG-based detector named TIRNet and focused on providing
an efficient system which was evaluated on a custom-compiled dataset named CTIR and
on a KAIST dataset [26]. The dataset availability for the thermal spectrum is apparent
and in this field. For example, a new interesting visual dataset appears in [27], which
attempts to cover more diverse sceneries. One approach for taking advantage of these
datasets is to transfer knowledge from the visual to the thermal spectrum. For example, in
another work which also focuses on Autonomous Driving [28], it uses transfer learning
to provide low-level feature transfer from the visual to the thermal domain in order to
improve the performance in low lighting conditions. The models used were SSD and
Faster RCNN. Increasing environmental awareness is crucial for Autonomous Driving
and the authors in [29] attempted in an innovative manner to enrich this knowledge by
detecting roadside wild animals utilizing thermal imagery and a Yolov8 variation. This
approach aims at employment in embedded systems in order to mitigate the chance of
animal-vehicle collision.

As stated before, the typical resolution of thermal imagery is small and thus, deploy-
ment of thermal object detection models in embedded devices might seem reasonable.
Nevertheless, the detection of small objects in the latter already stretched resolution is
challenging, especially when combined with the innate scarcity of detailed textures for ther-
mal imagery. Applications which attempt to contribute to this task are always interesting
such as the case in [30], where the authors utilize a Yolov5 [20] -based model deployed in
integrated circuits TIFAD [31]. The application datasets were mainly TIFAD [32], and for
model robustness, evaluation HRSID [33]. The relevant works including thermal object
detection on embedded devices are even more limited and the ones published attempt
to fill in the gap in this research field by introducing model improvements, as in the case
of [34] for a variation in Yolov3 [35] but the use of non-benchmark datasets ultimately
restricts the impact on the community.

Another application of thermal detection is for research and rescue operations, espe-
cially during nighttime. One such example is presented in [36], where the authors employed
a thermal object detection mechanism to detect waterborne individuals at nighttime when
it is more challenging to accomplish. They also compiled a custom dataset to train and
evaluate their model which was based on Yolov5 architecture [20].

As mentioned before, in the surveillance thermal object detection subtask, works often
focus on person detection, like in [37], where the authors present a method for background
removal and which is applied on two sequences of the CDNet-2014 dataset [38]. Depending
on the problem to be solved, the classes of interest might include more objects, like in [39],
which attempts to detect animals in thermal imagery as it considers them a threat for crops
and farmers especially during the night. Due to object instance sparsity, a GAN, more



Sensors 2025, 25, 6680

50f22

specifically ThermalGAN [40], was utilized to increase the number of training samples
while the selected model was Yolov4. Other works attempt to unify the visual and thermal
detection subtasks, considering they are complementary to each other. In [41], the three
classes were detected animals, people and vehicles, while the model being utilized was
Yolov3 [35] and the focus was the development of an outdoor surveillance system. A related
task for mitigating potential threats was detecting UAVs utilizing thermal imagery [42].
The authors in the latter publication evaluated four models, more specifically Yolov9 [43],
GELAN [44], DETR and ViTDet [45], in the anti-UAV Dataset compiled during the 2023
CVPR [46]. The best performance (in mAP) was achieved by GELAN while the faster
detector was Yolov9.

As is obvious in the literature, thermal object detection field is deprived of the rich,
extended benchmark datasets available in visual object detection. On the other hand,
shutting down the entire department of thermal detections deprives any system of the
advantages of the thermal spectrum. Thus, many researchers focused on leveraging both
spectrums to their advantage. One such work, which aims at providing a lightweight yet
effective multi-modal fusion model is [47]. The main mechanism utilized contains channel
switching and spatial attention (CSSA), while the evaluation was performed in FLIR and
LLVIP [48] datasets. Another multimodal system [49] performs late fusion to the detections
from different modalities while applying a simple probabilistic ensembling approach to
enhance the scores of consensual detections. Due to its late fusion nature, it can be applied
to both aligned as well unaligned multimodal datasets. An interesting network which
further expands the multimodality and encompasses three modalities in a Confluent Triple-
Flow Network is presented in [50]. The focus of the paper was to locate salient objects by
utilizing three flows: a visual, a thermal and a complementary one containing information
from both latter flows utilizing a divide-and-conquer approach to independently process
each flow while simultaneously extracting complementary features. Finally, they employ
their own compiled dataset VI-IMAG to evaluate the performance of their mechanism.

3. IR-Thermal Radiation

Infrared (IR and sometimes also called infrared light) is an electromagnetic radiation
(EMR) which has wavelengths longer than visible light but shorter than microwaves. Its
name denotes that it is under (infra) the red band of the visual spectrum which is the nearest
to IR. There is no strict definition of the boundaries of the IR band, but it is roughly between
780 nm and 1 mm wavelengths. It is not visible by the human eye, yet it transfers or reflects
heat. The IR band is divided into an active IR band and a thermal (passive) IR band [51].
The active band covers the part near the visual spectrum (0.7-2.5pum) and it is divided
into the NIR (near-infrared) and the SWIR (shortwave infrared) spectrum. The SWIR has
slightly better performance when low levels of obscurants like fog and smoke are present.
The passive IR band on the other hand covers spectra most distant to the visual band. It is
divided into the Mid-Wave (MWIR) and the Long-Wave InfraRed (LWIR) band. Both bands
are capable of capturing the emission of heat radiation from monitored subjects, but MWIR
also has some reflective properties, whereas LWIR is comprised almost entirely of emitted
radiation [51]. In practice, the difference between the active (reflected IR radiation) and
passive (thermal IR radiation) is the ability of the latter to operate without the requirement
of an external source of light or heat (which would be reflected by the object’s surface) and
thus, is highly robust to illumination fluctuations and weather conditions, while it can be
fully functional in the darkness [52]. The authors in [53] employ three modalities—more
specifically, visual, thermal and Lidar input, to perform 3D object detection and eliminate
blind spots for navigation purposes. The detector employs a Swin Transformer [54] to cope
with the detection part.
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4. Datasets

As mentioned before for IR/thermal object detection, the available public datasets
are quite limited compared to their counterpart visual object detection datasets. In [7]
where thorough research has been performed on the availability of such datasets, from a
reported 27 works on the field, 18 use a self-compiled dataset for their research and 2 did
not report their dataset. In summary, 20 out of 27 works (over 74%) did not utilize any
public dataset. This fact proves the lack of a universally accepted, well-established public
dataset which would operate as a benchmark for result reporting as is the case for Coco for
visual object detection. As is obvious, this is a huge disadvantage for comparing works and
promoting innovation in the field. Possibly, the best-known datasets in this field are KAIST
and FLIR-ADAS multispectral datasets. KAIST contains over 95k color-thermal image pairs
with 640 x 480 resolution but only three classes involving people are annotated: person,
people, and cyclist. All other objects are not annotated, and in order to utilize this dataset,
a re-annotation is required.

For the purposes of this work, four different datasets were utilized: FLIR-ADAS,
HIT-UAV [55], Corsican Fire Dataset [56] and Flame Dataset [57]. As mentioned before, we
have included only the objects which are relevant to the surveillance task and ignored all
other objects. Additionally, we have thoroughly examined the images provided to annotate
object instances we are interested in but that were not originally annotated (as, for example,
fire instances).

FLIR-ADAS on the other hand provides annotations for 16 classes of interest: 15 spe-
cific ones and 1 collective class for the remaining objects not belonging to any other class.
More specifically, the classes are Person, Bike, Car, Motorcycle, Bus, Train, Truck, Traffic
light, Fire Hydrant, Street Sign, Dog, Skateboard, Stroller, Scooter and Other Vehicle. Of
those, the first 5 and Truck were included in the final dataset being utilized in this work.
The perspective under which the images were captured is from a moving car since the
dataset’s initial purpose is for Autonomous Driving.

HIT-UAV is a high-altitude thermal dataset targeted at object detection. It comprises
2898 thermal images captured from the UAV perspective in various scenarios, such as
schools, parking lots, roads, and playgrounds. It contains 5 classes: 3 specific ones, 1 col-
lective for the remaining vehicles and one labeled Don’t Care. The classes are Car, Person,
Bicycle, Other Vehicle and Don’t Care. For the purpose of the surveillance task, the first
3 classes were selected.

In Table 1, the exact classes used from each dataset along with the actual object
instances included in the dataset are presented. The last column provided information
for the accumulated dataset which was utilized for the training of the models. As can
be observed, there are 7 classes included in the final compiled version. Nevertheless, the
dataset is quite unbalanced, with 2 classes dominating the dataset, Person and Car, and
accounting for nearly 90% of all instances. The latter distribution has an impact on the
ability of the model to predict certain classes.

The Corsican Fire Dataset is a dataset which focuses on fire detection. It contains
both visual and near-infrared images and also provides segmentation masks. If focuses on
outdoor fire instances and aims at providing a fire evolving dataset to promote scientific
research in the field. In total, 640 infrared images were obtained to be included in the
experiments conducted in this paper. It is worth noting that the dataset contains a little
more visual than infrared images.

The Flame Dataset is a multi-spectral dataset which focuses on external fire detection.
It contains both visual and thermal videos of fires. We have selected a video of the collection
which contains thermal video footage, extracted the images every 180 frames and manually
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annotated the Fire and Person instances in the frames. A total of 742 frames were acquired,
of which 581 frames contained Fire instances and were kept in the dataset.

Table 1. Number of classes in the datasets used.

Class Dataset

Corsican Fire

FLIR-ADAS [8] HIT-UAV [54] [55] Flame [56] Combined
Person v (50,478) v (12,312) x (1107) x (94) 63,991 (39.0%)
Car v (73,623) v (7311) * (147) n/a 81,081 (49.4%)
Bike v (7237) v (4980) n/a n/a 12,217 (7.4%)
Motorcycle v (1116) n/a n/a n/a 1116 (0.7%)
Bus v (2245) n/a n/a n/a 2245 (1.4%)
Train X(5) n/a n/a n/a n/a
Truck v (829) n/a n/a n/a 829 (0.5%)
Traffic light X (16,198) n/a n/a n/a n/a
Fire Hydrant X (1095) n/a n/a n/a n/a
Street Sign X (20,770) n/a n/a n/a n/a
Dog X4 n/a n/a n/a n/a
Deer X (8) n/a n/a n/a n/a
Skateboard X (29) n/a n/a n/a n/a
Stroller X (15) n/a n/a n/a n/a
Scooter X (15) n/a n/a n/a n/a
Other Vehicle X (1373) X (148) n/a n/a n/a
Don’t Care n/a X (148) n/a n/a n/a
Fire n/a n/a v (1021) v (1689) 2710 (1.7%)
Sum 135,528 24,603 2275 1783 164,189

Regarding the symbols used in Table 1: v' means class was found in the original dataset and also in the final
annotation. X the class was included in the original dataset but was excluded from the dataset utilized in this
work. N/a (not available) means the class is not present in the dataset at all and the * annotation for this class
was missing in the original but added to the final dataset. (xxx) represents the number of object instances inside
the dataset.

The type of classes we chose the model to be trained on are based on the ones which
reveal human presence or activity [58]. For thermal object detection, these include human
figures and various vehicle types (Car, Truck, Bus, Motorcycle, Bicycle). Additionally, as
stated, from the natural disasters list [58], we have also included fire instances as a crucial
yet detectable threat which can expand the system’s practical use.

The four datasets present different qualities and offer a more complete figure of the
detecting ability for the models under examination. The larger number of instances is
contained in the FLIR-ADAS dataset by a large margin. This dataset is the most challenging
one, as can be seen by comparing the results in the three result Tables. As regards the
dataset split, when an official data split was available, it was utilized in the experiments.
This was the case for the FLIR-ADAS and HIT-UAV datasets. Regarding the Flame v1
dataset, the adopted methodology involved splitting the dataset in a 90%-10% training—
validation set but keeping the first roughly 10% of the video to minimize the dependency
of the two sets. Obviously, there is a connection between the two sets, but it seems to be a
safer choice for evaluating the performance of the model. Finally, for the Corsican Fire, a
random 90%-10% split was also applied to create the two sets.

5. Results

In this section, we summarize the experiments and the results deduced by them. In
the context of this work, an extended series of experiments have been conducted in order
to evaluate the performance of efficient state-of-the-art object detection models and more
specifically Yolov8, Yolovll and RT-DETR v2 while being operated in the IR/thermal
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spectrum. The experiments included both effectiveness as well as efficiency metrics. This
way, a more comprehensive view of the models under inspection is provided and a safer
conclusion can be drawn.

The lack of a large benchmark dataset has limited the options for providing results
easily comparable to other works. For this reason, we opted for a compiled dataset from
four distinct public datasets. We have included the results in each dataset separately along
with the results in the compiled dataset. This way, it is easier to evaluate the performance
of each model for the various parameters being utilized in each case. Although all datasets
contain images in the IR spectrum, they exhibit different behavior and do not coincide in
their best performance for the same set of parameters.

5.1. Training Parameters and Process

The parameters utilized while conducting the experiments remained the default ones,
if not stated otherwise. More specifically, Yolov8 and Yolov11 shared the same parameters
which include Adam for the first 10,000 iterations and SGD [59] with momentum for the
rest of the iterations as the optimizer with a base-learning rate set to 0.01, a base weight
decay equal to 0.0005, a momentum equal to 0.937, a linear learning rate schedule, certain
warm-up iterations and an exponential moving average (EMA) decay set to 0.9999.

RT-Detr v2, on the other hand, utilizes Res-Net [60] as its backbone which is pretrained
in ImageNet [61]. Its optimizer is AdamW [62] with a fixed batch size of 3 (which provided
the best results) and an EMA is applied with ema_decay = 0.9999. For the optional discrete
sampling, an initial pre-training 6 x with the grid_sample operator is applied followed
by fine-tuning 1x with the discrete_sample operator. For scale-adaptive parameters, the
learning rate is set to 1 x 10~% and 5 x 107 for the backbones (ResNet18 and ResNet34,
respectively) while for the detection branch, it is set for both models to 1 x 1074,

Regarding the augmentation applied to the training phase, both models elaborated
extensive augmentation techniques in order to improve the models’ robustness and gen-
eralization ability. On the one hand, Yolov8 and Yolov1l shared the same techniques
which included color space alteration as well as geometric ones. Color space augmenta-
tion included random values in the HSV channels of the image and color swaps in the
RGB space while the geometric ones refer to random rotation (by 90 degrees to fit the
image in its rectangular initial shape), translation of the whole image, scaling of the image
(either zooming in or out), shear translation, perspective transformation, flip up-down
and left-right, a mosaic new image compiled of four independent images, a mixup of
two images (a blending of two images onto each other) and finally a compilation of a
cut corner of an image and the replacement of this part from a different image. On the
other hand, RT-Detr v2 utilizes the random erasing of a part of the image, random lighting
of the image, applying random distortion including hue, saturation, contrast, brightness
and color channel swap, resizing the image, randomly adding canvas around the image,
random cropping, randomly cutting a portion of an image and replacing it with that of
another image, applying the blending of two images, random shifting in an image and
finally a mosaic of four images. The most interesting part is that RT-Detr v2 applies a
dynamic augmentation approach for the training, which means it switches off some of the
augmentations for the final epochs of training.

Yolov8 and Yolov1l were trained for 100 epochs in each experiment, while their
counterpart RT-Detr v2 was trained for 120 epochs following the setup provided by the
developers of the respective models. The batch size for each experiment was set to the
maximum allowed value for Yolos while for the transformer after experimentation it
was kept fixed to three because the best performance was acquired using this parameter.
The image resolution acquired four distinct values (as presented in the results Tables)
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utilized for both training and evaluation which are 640, 768, 896 and 1024. The model
variation being chosen represents variations which typically present detection ability while
maintaining their resources requirement to modest levels. As has been confirmed by the
results, effectiveness of the models typically diminishes after a certain input image size.
The training and evaluation were conducted in GeForce RTX 3080 (10 GB) and NVIDIA
RTX 4090 (24 GB). The efficiency evaluation was specifically measured in the less efficient
card (RTX 3080) to obtain a minimal efficiency metric.

5.2. Models’ Efficiency

The efficiency results are presented in Table 2, where it can be seen how each model
performed in this field in regards to other parameters like image resolution and model
variation. By simply comparing the speed of the models in inference mode, the faster one
was Yolovs, followed by RT-Detr v2, and Yolov11 being the least efficient. The evaluation
was performed on a modest GPU card, a GeForce RTX 3080, and it must be noted that
all architectures achieved real-time performances (above 25 fps) for the models examined.
Training was performed on a more powerful machine possessing a GeForce RTX 3090
card. More specifically, the models chosen to participate in these evaluation tests were
the most efficient ones with the exception of nano variations which were skipped for both
Yolov8 and Yolv11. Thus, the variations which participated in the experiments were the
small and medium ones for the Yolo candidates and r18vd and r34vd for the Transformer
candidate. Although the best single processing time is achieved by Yolov8, this trend
does not seem to be consistent. On the contrary, the analysis of the overall performance of
each architecture reveals a more complex pattern for the speed of each model. As already
mentioned, the faster model is Yolov8, yet its efficiency is highly impacted by the image
resolution. For example, in FLIR-ADAS, when utilizing the small variation, it achieves a fps
80 for the smallest resolution, 640 x 640, but drops to 42 for the largest, 1024 x 1024. This
is a reduction of 47.5% which seems impressive. On the other hand, RT-DETRv2 achieves a
speed of 73 fps for the 640 x 640 resolution but achieves 54 fps for the 1024 x 1024 input
images (a reduction of 26.0%), with the latter performance being much higher than Yolov8's
counterpart. Yolov1l, which shares a lot of components with the Yolov8 architecture,
operates in a similar fashion and presents a drop of 46.4% (from 56 to 30 fps) between the
smallest and largest image resolution inputs. Thus, the conclusion is that the efficiency of
each model highly depends on the image resolution and the architecture used.

Another interesting fact is the way each model is affected by the increase in the image
resolution. Yolos exhibit similar patterns regarding their performance, as greater images
are being utilized: their processing speed decreases relatively quickly. The fastest model
is Yolov8 for the small variation and 640 image resolution, but when the image utilized is
increased to 1024 pixels, the speed drops to almost half: from 80 to 42 fps. Yolov11 is the
least efficient model, with the best processing time at 56 fps for the smaller model in the
640-pixel analysis, which drops to 35 when 1024-pixel images are inserted in the system.
This trend is even increased if the more powerful variation is utilized, the medium one.
In this case, the speed varies from 56 to 30 fps for Yolov8 and 48 to 25 fps for the Yolov1l
model. On the contrary, RT-Detr v2, while being the second fastest model with 73 fps in
the smallest resolution (640 x 640), it scales more smoothly when 1024-pixel images are
inserted in the model which can be processed at 54 fps (almost as the fastest performance
of Yolov1l). So, as a conclusion, RT-Detr can maintain its processing time more stably as
the input image fluctuates, which is a huge advantage over Yolos.
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Table 2. Efficiency results of the models.

Model Variation Image Resolution Fps Parameters (M) GFlops
640 x 640 80 11.1 28.8
I 768 x 768 66 11.1 415
sma 896 x 896 51 11.1 56.5
1024 x 1024 42 11.1 73.8
Yolov8 640 x 640 56 259 79.3
g 768 x 768 45 25.9 114.2
medium 896 x 896 37 25.9 155.5
1024 x 1024 30 25.9 203.1
640 x 640 56 9.4 21.7
1 768 x 768 48 9.4 31.3
sma 896 x 896 43 9.4 426
1024 x 1024 35 9.4 55.6
YoloTl 640 X 640 48 20.1 68.5
g 768 x 768 38 20.1 98.7
medium 896 x 896 31 20.1 134.3
1024 x 1024 25 20.1 175.4
640 x 640 73 20.0 61.1
18 768 x 768 63 20.0 87.1
! 896 x 896 58 20.0 117.8
1024 x 1024 54 20.0 153.4
RT-Detr v2 640 x 640 57 313 93.2
” 768 x 768 48 31.3 132.9
! 896 x 896 44 31.3 180.0
1024 x 1024 40 31.3 234.3

5.3. Model’s Effectiveness

The results regarding the performance of each model for the various image resolutions
are presented in Table 3. As can be seen from Table 2, the goal of providing real-time
performance is matched for all models examined, but with big differences between model
performances. Thus, this factor should be taken into consideration when impacting perfor-
mance. Regarding the actual mAP achieved, the differences observed in Table 3 are less
impressive. The best performance was achieved by Yolov8 at 0.543, followed closely by
Yolov1l at 0.541 and finally RT-Detr at 0.517. Its counterpart mAP0.50 gave similar results,
with Yolov8 achieving 0.781, Yolov11 0.773 and RT-Detr 0.759 and the differences are still
minimal. The individual precision in each dataset gave more diverse outcomes. More
specifically, inFLIR-ADAS and Corsican Yolov8 took first place, inHIT-UAV Yolov11 won,
and finally inCorsican fire RT-Detr had the best performance.

At first glance, the difference in the best mAP or mAPO0.5 for each model is minimal,
especially between the two Yolos which have a difference of 0.002. On the second-level
analysis, when the processing ability of each model is included, we can observe that Yolov8
can process 37 fps, Yolov11l 25 frames and RT-Detr 40 frames at the same time. As can be
observed, the order is reversed in the processing speed, with first place going to RT-Detr.
Thus, in cases where the most important aspect is delivering a quick detection system, the
inclusion of RT-Detr might be the best option.
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Table 3. Effectiveness results of the models (mAP/mAP).
Model Variation Image Resol. FLIR-ADASv2 HIT-UAV Corsican Flame Combined
640 x 640 0.429/0.647  0.642/0.946 0.805/0.970 0.579/0.866  0.501/0.749
1 768 x 768 0.435/0.665 0.646/0.946 0.827/0.974 0.614/0.901 0.509/0.751
sma 896 x 896 0.454/0.676 0.650/0.948 0.826/0.973 0.585/0.873  0.513/0.757
1024 x 1024 0.452/0.667  0.649/0.949 0.822/0.974 0.586/0.870  0.518/0.753
Yol
olovs 640 x 640 0.460/0.679 0.643/0.947 0.826/0.979 0.604/0.878  0.525/0.762
di 768 x 768 0.461/0.680 0.645/0.944 0.823/0.972 0.624/0.872  0.532/0.765
medim 896 x 896 0.475/0.692 0.653/0.948 0.811/0.969 0.623/0.907 0.543/0.781
1024 x 1024 0.470/0.689 0.653/0.947 0.820/0.965 0.597/0.849  0.538/0.774
640 x 640 0.425/0.664 0.642/0.948 0.819/0.969 0.606/0.926  0.529/0.769
1 768 x 768 0.437/0.673 0.651/0.946 0.808/0.974 0.600/0.891  0.520/0.757
sma 896 x 896 0.447/0.668 0.652/0.950 0.820/0.974 0.598/0.901  0.514/0.754
1024 x 1024 0.448/0.670 0.653/0.949 0.813/0.965 0.591/0.886  0.499/0.740
Yololl 640 x 640 0.451/0.681 0.649/0.947 0.817/0.970  0.630/0.903  0.525/0.770
4 768 x 768 0.463/0.680 0.653/0.953 0.821/0.974 0.628/0.902 0.539/0.772
eI 896 x 896 0.470/0.689  0.657/0.950 0.819/0.969 0.622/0.885 0.538/0.773
1024 x 1024 0.468/0.684 0.653/0.953 0.818/0.972  0.608/0.885  0.541/0.773
640 x 640 0.425/0.648 0.622/0.948 0.808/0.947 0.587/0.915 0.494/0.739
18 768 x 768 0.437/0.653 0.627/0.945 0.803/0.953 0.605/0.916  0.509/0.750
r 896 x 896 0.454/0.676 0.629/0.947 0.799/0.961 0.595/0.882  0.516/0.758
1024 x 1024 0.446/0.661 0.632/0.947 0.803/0.965 0.604/0.911  0.503/0.735
RT-Detr v2
ey 640 x 640 0.450/0.684 0.625/0.950 0.779/0.950 0.630/0.902  0.502/0.759
34 768 x 768 0.440/0.682 0.620/0.949 0.789/0.954 0.605/0.871  0.509/0.752
r 896 x 896 0.445/0.667  0.608/0.938 0.790/0.953 0.601/0.879  0.517/0.758
1024 x 1024 0.445/0.668 0.594/0.926 0.791/0.953 0.651/0.888 0.514/0.755
Attempting a more scrutinized analysis per class, we present the best mAP perfor-
mance for each model and its performance over each class in Table 4. First of all, as is
expected, the average precision is quite diverse for specific classes. The lowest performing
class is the Truck one, which can be attributed to a low instance number as well as visual
proximity with the Bus class especially in the thermal spectrum (in the visual one, there
is also the advantage of clearer images and color information). To further elaborate for
the misclassification of each class, a Confusion Matrix has been produced, as displayed
in Figure 1. The model which was selected to produce the Confusion Matrix is the best
performing one, Yolov8 medium at 896 image resolution. It can be seen that indeed the ma-
jority of the Truck objects belong to the Bus class, followed by the Car class. The threshold
for validating a detection is set to 0.02 (under this threshold, the detection is dismissed), and
the threshold for assigning to a ground truth bounding box is an IoU of 0.5 (an IoU value
less than this value considers this specific detection to be a false positive). An interesting
part is that Yolov11 had the most first places with 5, but Yolov8 had the best overall mAP.
Yolov8 and RT-Detr had one first place each. As is obvious from the classes, at least some
of them can be combined to improve performance.
Table 4. Per class mAP performance of the models.
Model All Car Person Truck Motorcycle Bus Bicycle Fire
Yolov8 0.543 0.693 0.557 0.283 0.443 0.531 0.584 0.707
Yolo11 0.541 0.703 0.566 0.214 0.479 0.532 0.587 0.702
RT-Detr 0.517 0.674 0.536 0.189 0.443 0.502 0.552 0.720
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Figure 1. Confusion Matrix of the detected objects vs. the actual objects. The model utilized is the
best performing Yolov8 896 x 896 model.

In order to mitigate the imbalance of the dataset, we have attempted certain methods
to examine if any of them could improve the performance in the mis-performing classes
as well as the overall model performance. In the following table, Table 5, the results
of applying certain mitigation methods are presented. The best performing model is
chosen, Yolov8, to apply the methods on. Yolov8 medium at 896 image resolution achieves
0.543 mAP, and Truck 0.283 AP. None of the methods achieve higher mAP, with only the
weighted classes, in which the Truck was assigned a weight of 20 while all other classes
had 1, achieved the same mAP. Nevertheless, even in this case, the Truck mAP was less
than the original one, 0.233 vs. 0.283. Thus, we could not encounter any fruitful mitigation
method for the poor performance of the Truck class.

Table 5. Weighted training for the Yolov8 model.

Model All Car Person Truck Motorcycle Bus Bicycle Fire
Yolov8m 896 0.543 0.693 0557 0.283 0.443 0.531 0584  0.707
Yolov8m 1024 0.538 0.701 0.564  0.229 0.460 0.521 0583  0.711

Yolov8m weighted dataloader 896 x 896  0.526 0.677 0.544  0.193 0.472 0521 0573  0.703
Yolov8m weighted dataloader 1024 x 1024 0.519 0.689 0552  0.218 0.407 0.507 0564  0.700
Yolov8m weighted classes Truckx20 0.543 0.697 0.558  0.233 0.465 0.534 0583  0.732

Finally, when analyzing the per individual dataset performance, we observe a similar
trend with the combined dataset performance. Of the four datasets, the first two places
are taken by Yolov8 and two by Yolov11 for the mAP metric. When mAP50 is utilized as a
metric, the general image does not change since again the top spots are split between the
two Yolos. As a conclusion, Yolos share a similar partner, and thus, their performance is
quite close in all four datasets while RT-Detr somehow deviates from this pattern.

The comparison between the CNN-based detectors (Yolovs) and the transformer ones
(RT-Detr v2) indicated a superiority of the former which might seem counterintuitive.
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We suspect this behavior to be boosted by the small dataset size since transformers tend
to be more reliable to large dataset availability [63]. Since the datasets being utilized
for this paper are relatively small, this could be the reason for performing worse than
the CNN-based counterparts. A solution to this drawback is to take advantage of the
ability of the transformers to extract generic features from their (typically large) training
set and later be successfully fine-tuned in a smaller dataset. This approach often proves
to be fruitful because the features transformers learn tend to be generic, and thus, highly
robust to transfer to different tasks [64]. The transformer utilized in these experiments
was trained on ImageNet and thus, the features learned should be considered generic
enough. A possible explanation for its under-performance could be that the model was
trained through exploiting transfer learning with all of its layers unfrozen. Possibly, a
more conservative approach would have kept more generic features intact and produced
better results.

In the following Figures 2-11, detection examples are presented to visualize the

detection ability of the models. In each example, only the best model’s output is depicted
in each dataset (Yolov8 or Yolov11).

(a) (b)

Figure 2. Detection example from the FLIR-ADAS dataset using Yolov8. (a) The original image from
the dataset; (b) the detected objects being annotated as overlayed bounding boxes.

(a) (b)

Figure 3. Detection example from the HIT-UAV dataset using Yolov1l. (a) The original image from

the dataset; (b) the detected objects being annotated as overlayed bounding boxes.
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(@) (b)

Figure 4. Detection example from the Corsican Fire dataset using Yolov8. (a) The original image from
the dataset; (b) the detected objects being annotated as overlayed bounding boxes.

Figure 5. Detection example from the Flame dataset using Yolov11. (a) The original image from the
dataset; (b) the detected objects being annotated as overlayed bounding boxes.

(a) (b)

Figure 6. Detection example containing errors from the FLIR-ADAS dataset using Yolov8. (a) The

original image from the dataset; (b) the detected objects being annotated as overlayed bounding
boxes. The car (van) is detected as two distinct instances.
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(a) (b)

Figure 7. Detection example containing errors from the FLIR-ADAS dataset using Yolov8. (a) The
original image from the dataset; (b) the detected objects being annotated as overlayed bounding
boxes. A false positive bike being detected.

(a) (b)

Figure 8. Detection example containing errors from the HIT-UAV dataset using Yolov8. (a) The
original image from the dataset; (b) the detected objects being annotated as overlayed bounding
boxes. A car is not being detected (false negative).

(@) (b)

Figure 9. A second detection example containing errors from the HIT-UAV dataset using Yolov8. (a)

The original image from the dataset; (b) the detected objects being annotated as overlayed bounding
boxes. A car is not being detected (false negative).
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(@) (b)

Figure 10. Detection example containing errors from the Flame v1 dataset using Yolov8. (a) The
original image from the dataset; (b) the detected objects being annotated as overlayed bounding
boxes. A non-existent fire instance is being detected (false positive).

() (b)

Figure 11. Detection example containing errors from the Corsican Fire dataset using Yolov8. (a) The
original image from the dataset; (b) the detected objects being annotated as overlayed bounding
boxes. A fire instance is being detected thrice (two false negatives).

To further examine the models” generalization ability, we have selected a subset of
the SMOD multi-modal dataset [65]. This dataset contains images from four modalities:
RGB, fir (far IR), mir (middle IR) and nir (Near IR). We selected the first 500 images and
performed inference on this subset. The four modalities do not contain images in the same
resolution and most importantly the same field of view, which might have an impact on the
model’s performance. The latter fact is revealed in the ground truth of the objects annotated
in each modality. The RGB subset contains 458 images with objects in it, the fir subset 461,
the mir subset 436 and the nir 447. It is obvious that RGB and fir have the larger field of
view, while mir and nir images cover a much smaller area. Another observation is that nir
images are visually closer to the visual spectrum than to fir ones. This explains the poor
performance of our model on it, since our training did not contain any image from the
visual spectrum (although the Corsican dataset is captured in the nir band). The following
figures, Figures 12 and 13, contain examples of this inference on SMOD. As a conclusion of
this inference experiment, we can infer the following:

(a) The model’s modality is crucial for its detection ability (nir modality performs
worse than the fir one for example).
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(b) The visual differences in the modality trained versus the one being evaluated
against can cause false positives (in the first nir image the traffic light is detected as a fire
instance) of false negatives.

(c) To provide the model with robust generalized detection abilities, a diverse and

possibly multi-modal thermal dataset would be beneficiary.

(©) (d)

Figure 12. A detection example from the SMOD dataset using Yolov8. (a) The original RGB image
(shown for object demonstration); (b) the detected objects on the nir image are shown as overlay
bounding boxes; (c) the detected objects on the mir image are shown as overlay bounding boxes;
(d) the detected objects on the fir image are shown as overlay bounding boxes.

(a) (b)

Figure 13. Cont.
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(©) (d)

Figure 13. A second detection example from the SMOD dataset using Yolov8. (a) The original RGB

image (shown for object demonstration); (b) the detected objects on the nir image depicted as overlay
bounding boxes; (c) the detected objects on the mir image depicted as overlay bounding boxes; (d) the
detected objects on the fir image depicted as overlay bounding boxes.

6. Conclusions

In this work, comprehensive research into the ability of IR/thermal object detection
models to fulfill their role as the backbone for the IR/thermal security detection system has
been performed. The models included to participate were state-of-the-art examples and
were chosen for their stellar performance. Additionally, a second requirement for the mod-
els was their efficiency: every model examined can provide a real-time processing speed
for image resolutions up to 1024 pixels even when examined in middle-end GPU cards.

For the research activity, a compilation of thermal/IR publicly available datasets was
utilized. The compiled dataset underwent filtering for the irrelevant classes—which were
ruled out—and manual annotation for the object instances present but not annotated.
This led to an unbalanced dataset with which we attempted to cover the requirement
for detections. The performance of each model provided efficient operation, yet their
performance in detection ability was lower than expected with the better mAP reaching
0.544. This fact is mainly attributed to the lack of a larger dataset, which would cover
more diverse object instances, capturing angles and distances. Through the experiments, it
was shown that larger image resolution or model power does not guarantee better overall
performance. The latter fact in combination with the decrease in model efficiency as its
processing power increases, tends to promote medium models and resolutions as the best
options. Nevertheless, this paper provided evidence that a security system can benefit by
incorporating IR/thermal detection in its set of tools to further improve its detection ability
and armor it against undetected threats.
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IR Infrared

RGB Red Green Blue

RCNN  Region-based Convolutional Neural Network
GB Giga Bytes

CNN Convolutional Neural Network

GPU Graphics Processing Unit

HSV Hue Saturation Value
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